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An investigation is made of the sound produced when a rectilinear vortex is cut at 
right angles to its axis by a non-lifting airfoil of symmetric section. The motions are 
a t  sufficiently low Mach number that the wavelength of the sound is large relative to 
the chord of the airfoil. In these circumstances the airfoil experiences no fluctuating 
lift during the interaction, and the radiation may be ascribed to an acoustic source 
of dipole type whose strength is equal to the unsteady drag. It is argued that 
previous analyses of the related problem of ‘ unsteady thickness noise ’ have ignored 
certain terms whose inclusion greatly reduces the predicted intensity of the 
radiation. A general formula for the surface forces (derived in an appendix) is applied 
to deduce that the dipole strength is proportional to the square of the circulation of 
the vortex, and depends on the spanwise acceleration of the vortex induced by 
images in the airfoil. Numerical results are presented for typical airfoil sections, and 
a comparison is made with the unsteady lifting noise generated when the axis of the 
vortex is inclined a t  a small angle to the normal to the median plane of the airfoil. 

1. Introduction 
Sound is produced when vorticity is cut or distorted by edges, corners, struts, 

turning vanes, airfoils, and other flow-control surfaces. In  applications the impinging 
vorticity may consist of discrete, locally rectilinear vortex elements, exemplified by 
tip vortices from helicopter main-rotor blades that are ‘sliced ’ longitudinally by 
following rotor blades, or ‘ chopped’ by the tail-rotor ; alternatively, the vorticity 
may be in the form of a turbulent ‘gust’ that is ingested by a propeller or 
turbomachine. At low Mach numbers, the principal source of the radiation generated 
by vorticity interacting with an airfoil is the force exerted on the fluid in reaction to 
the unsteady lift experienced by the airfoil. The source is of ‘dipole’ type, and 
exhibits a radiation null in the plane of motion of the airfoil. The radiation in the 
latter directions is produced by a dipole associated with the drag induced by the 
vorticity. The strength of the lift dipole is proportional to the product of gust 
velocity (or vorticity) and the airfoil velocity (see, e.g. Amiet 1986 and references 
cited therein), whereas the unsteady drag is smaller by a factor approximately equal 
to the angle of attack of the airfoil, or is second order in the perturbation velocity 
when the airfoil has zero mean lift (Lighthill 1986). 

The radiation produced by the unsteady airfoil drag has been termed ‘unsteady 
thickness noise’ by Hawkings (1978). It is believed to make an important 
contribution to the broadband sound radiated in the forward (flight) direction by a 
helicopter tail-rotor, and Hawkings (1978) and Glegg (1987) have developed 
approximate schemes for predicting the component of this noise produced by 
turbulence inflow. The strength of the drag dipole was estimated from the condition 
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that the surface of each airfoil must be a stream surface of the unsteady flow, but 
with no account taken of the back-reaction of that flow on the impinging vorticity. 
This procedure ignores significant effects arising from the distortion of the vortex 
field near the airfoil, and, for a non-lifting airfoil, leads to a prediction of the dipole 
strength that is linear, rather than quadratic, in the gust velocity. 

The influence on thickness noise of distortion of the inflow vorticity (or ‘gust’) is 
examined in this paper for interactions that occur a t  low Mach number. In  the 
absence of mean lift (which is essentially the model used by Hawkings and Glegg) two 
additional components of the sound are identified that were overlooked in the earlier 
studies, and which significantly change the character of the predicted radiation. 
First, vorticity that is rapidly convected relative to the airfoil may be assumed to 
translate a t  the local non-uniform mean stream velocity (the ‘ rapid-distortion ’ 
theory of Ribner & Tucker 1953, and Batchelor & Proudman 1954). The sound 
produced by this passive distortion of the vorticity is precisely equal and opposite to 
that determined by the Hawkings-Glegg stream-surface condition. Second, sound is 
produced by nonlinear distortion of the vortex field by image vortices in the airfoil. 
This would be expected to dominate the radiation in the plane of motion of the airfoil 
provided the airfoil mach number M ,  say, is sufficiently small. In  particular, its 
intensity is O( 1/M2) ( % 1) relative to that of sound produced by the Reynolds stress 
quadrupole sources in the disturbed flow close to the airfoil (Ffowcs Williams & 
Hawkings 1969). For an airfoil with mean lift there is in general a further component 
of drag that is linear in the gust vorticity, caused by the distortion of vorticity by 
the mean circulatory flow. Goldstein & Atassi (1976) and Atassi (1984) have analysed 
this distortion for two-dimensional airfoil-gust interactions, and Howe (1988 a )  has 
made estimates of its contribution to the thickness noise in the case of a three- 
dimensional gust. 

These assertions will be illustrated by consideration of the sound produced when 
a rectilinear vortex of finite-diameter core (but with no axial velocity defect) is 
severed a t  right-angles to its axis by a two-dimensional, non-lifting airfoil of 
symmetric section. The unsteady lift vanishes identically (Amiet 1986 ; Howe 1988b), 
and the main source of radiation is the thickness-generated noise. A general formula 
for the force exerted on the airfoil by a field of vorticity is applied in $2 to determine 
the principal characteristics of the drag. This formula does not appear to be well 
known, and is derived and discussed in relation to existing formulae in the Appendix. 
In 93 a perturbation analysis is made of the thickness-generated noise for arbitrary 
distributions of vorticity in the core. The results of the general investigation are 
confirmed in $4 in the specific instance in which the core is assumed to be in solid- 
body rotation. In  $5 three different airfoil sections are examined, and a comparison 
made (56) of the predicted radiation with that produced by the unsteady lift when 
the axis of the vortex makes a small but finite angle with the normal to the median 
plane of the airfoil. 

2. Unsteady forces on the airfoil 
Consider a rigid, two-dimensional airfoil in steady, low-Mach-number translational 

motion at  speed U in the negative direction of the x,-axis of a rectangular coordinate 
system (x1,x2,x3) in fluid a t  rest a t  infinity, as illustrated in figure 1. The airfoil is 
a t  zero angle of attack, and has a symmetric section relative to the median plane 
x3 = 0, such that its upper and lower surfaces are respectively given by an equation 

(2.1) 
of the form 

x3 = Ik [(x, + Ut) ,  Ixl + UtJ < a ,  
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x3 = C(X, + Ur) 
U 
c- 

Vorticity 

FIGURE 1 .  Interaction of a non-lifting airfoil with a field of vorticity. 

where t denotes time, 2a is the chord, and the 2,-axis is in the spanwise direction (into 
the plane of the paper in the figure). The fluid has uniform mean density pa and sound 
speed c, and contains a field of vorticity which, in the absence of the airfoil, is given 

(2.2) o(x, t) = curl u, (x, t), by 

so that uo is the velocity of the undisturbed ‘gust’. 
According to Curle’s (1955) theory of aerodynamic sound and its extension by 

Ffowcs Williams & Hawkings (1969), when the Mach number M = U/c is small, the 
dominant acoustic radiation is produced by a dipole source whose strength is 
proportional to the unsteady force F on the airfoil. To a first approximation this force 
may be determined from the equations of incompressible flow. To do this in a 
generalized fashion we make use of a formula for unsteady surface forces derived in 
the Appendix. In applications the flow is usually at sufficiently high Reynolds 
number that the normal surface stresses are large relative to the skin-friction forces. 
The force 4 exerted on the airfoil in the i-direction is then given by (A 4) in the form 

(2.3) 
where the integration is over the region occupied by the fluid and urel is the fluid 
velocity relative to the airfoil. The function X, = X,(z ,  + Ut, x2, x3) denotes the 
velocity potential of an irrotational flow past the airfoil that satisfies the following 
conditions : 

4 = po/VXt-o A ure1d3x, 

(2.4) I V2Xi = 0 

n. VX, = 0 

in the fluid, 

X,+z, as IxI+co, 

on the surface of the airfoil, 

where n is the unit normal vector. Note that X, = x, for two-dimensional surfaces 
which are uniform in the x,-direction. 

When I u , ~  < U, the unsteady lift F3 on the airfoil is given to leading order in the 
gust velocity by 

which is linear in o, i.e. in v,. The order of magnitude of the drag F, is obtained by 
observing that 

(2.6) Ure1 = 0’ + uvx,, 
where u’ is a velocity of the same order of magnitude as the gust velocity v,, and 
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UVX, - (U ,  0,O) is the irrotational velocity caused by the displacement of fluid by the 
translational motion of the airfoil. Hence 

Fl = po JVX,.o A v' d3x, (2 .7)  

which is second order in the gust velocity. 
It follows that the amplitude of the radiation produced by the unsteady drag on 

a non-lifting airfoil is quadratic in the gust velocity. This is a t  variance with the 
predictions of Hawkings (1978) and Glegg (1987),  who obtained a linear dependence 
on gust velocity (this is discussed in more detail in $3). For an airfoil with mean lift, 
and angle of attack a,, say, the velocity u' in the integrand of (2 .7)  must include an 
additional, and usually larger component of order u,, U equal to the mean circulatory 
velocity about the airfoil. Equation (2 .7)  then implies (since i3Xl/i3x1 = 1 + O(u,)) 
that  the amplitude of the 'thickness '-generated sound is proportional to 
a, wg U +  nonlinear terms, i.e. to leading order the thickness noise is linear in the gust 
velocity provided the spanwise component of vorticity w3 =+ 0. I n  consequence, when 
a rectilinear vortex is chopped by a lifting or non-lifting airfoil moving in a plane 
perpendicular to the vortex axis (so that to  a first approximation w3 = 0 ) ,  the 
thickness noise is always nonlinearly dependent on the vortex strength. In  such cases 
the mechanism of sound production may be interpreted in terms of the distortion of 
the vortex by images in the airfoil. 

For arbitrary inflow turbulence the drag Fl is usually negative and can be 
identified with the airfoil leading-edge suction force (assuming that trailing-edge 
suction is eliminated by a Kutta condition). Hence, the intensity of the 'thickness 
noise ' actually remains finite when the thickness of the airfoil tends to zero (cf. Howe 
1 9 8 8 ~ ) .  However, when a rectilinear vortex is chopped a t  right-angles to its axis by 
a non-lifting, symmetric airfoil, there is no net flow about the leading edge and the 
unsteady drag vanishes with the thickness of the airfoil. We now proceed to a 
detailed examination of this case. 

3. Normal chopping of a rectilinear vortex 
3.1. Formulation of the problem 

In  the undisturbed state the axis of symmetry of the vortex coincides with the 
x,-axis, which is normal to the median plane of the airfoil (see figure 2 ) ,  and the 
vorticity has the time-independent distribution 

w = (O,O,w,) ,  w, = w,(lx;+s$)* (3 .1)  

The Reynolds number is sufficiently large that viscous stresses may be neglected, and 
the Mach number, M ,  is small enough that convection and scattering of sound by the 
flow are unimportant. The production of sound is then governed by the 
inhomogeneous wave equation (Howe 1975) 

(&-V)B = div(w A v ) ,  

where B is the stagnation enthalpy, which is defined in flow of uniform mean density 

B =  dp/p++', (3 .3)  I by 

p being the pressure and p = p(p) the density. At points in the fluid where w = 0, 
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Vortex 

FIQURE 2. Configuration of the vortex and airfoil 

Bernoulli's equation implies that B = -a@/at, where @ is a velocity potential of the 
perturbed flow ; in the acoustic far field the perturbation values of p and B are related 

p ( x ,  q/po = 4 x 3  t ) .  (3.4) by 

To first order in the thickness of the airfoil, the condition that the airfoil surface 
should coincide with a stream surface becomes 

ax,- laxl- ax, 
v3 = TC"+v av -+u--, ag 

(3 .5)  

The motion produced when the airfoil cuts the vortex is symmetric with respect to 
the median plane x3 = 0. The component v3 of the fluid velocity accordingly vanishes 
on x3 = 0, Ixl + Utl > a, where 6 = 0, and the boundary condition (3 .5)  is therefore 
applicable for all values of xl.  Since the velocity remains finite a t  the trailing edge of 
the airfoil it is unnecessary to impose a Kutta condition and to account for additional 
vorticity shed into a wake. 

In  an approximation that is linear in 5, there are three components of unsteady 
motion. These are (i) the local mean flow about the airfoil caused by its steady 
translation a t  velocity ( -  U,  O , O ) ,  (ii) the motion generated by diffraction by the 
airfoil of the unperturbed vortex-induced velocity v,, say, and (iii) the change in the 
induced velocity of the vortex as a result of its distortion by the flow. The motions 
(i) and (ii) can both be represented by a velocity potential that satisfies the 
homogeneous wave equation (cf. the note following (3 .3 ) )  

( 3 . 6 ~ )  

and the boundary condition obtained by setting v = v, on the right-hand side of 
(3 .5)  : 

(3.6b) 

The first term on the right-hand side of (3 .6b)  accounts for sound generated by the 
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diffraction mechanism (ii) ; the term involving U is responsible for the local mean flow 
(i), which decays rapidly with distance from the airfoil. At large distances the 
component of acoustic pressure defined by p A ( x ,  t )  = -po a$,/at coincides with the 
'thickness' noise of Hawkings (1978) and Glegg (1987). 

The additional velocity (iii) caused by the distortion of the vortex will be denoted 
by u,(x,t) .  By symmetry, this satisfies v13 = 0 on x3 = 0. The total velocity 

must be used in the source term on the right-hand side of (3.2) to determine the 
component B,(x,t)  of the stagnation enthalpy generated when the vortex is 
distorted. To first order in c, B D  satisfies 

u = u O + V $ A + U I ,  (3.7) 

with -- "D - o on x3 = 0, uself = uo + u,. 
ax3 

(3 .8a )  

(3.86) 

Let p ,  denote the corresponding component of the acoustic pressure. At large 

p ( x ,  t ,  = P A ( x ,  t ,  + p D ( x ,  t ) ,  (3 .9a )  

where P A  = - P O X '  W A  P O  =POB, .  (3 .96 )  

distances from the airfoil we then have 

3.2. The radiated sound 

The solutions of (3.6), (3.8) must satisfy the radiation condition of outgoing wave 
behaviour. An integral representation of is easily obtained by use of Fourier 
transforms. To do this we first define the wavenumber-frequency transform f (k, w ) ,  
k = ( k l ,  k,, 0 ) ,  of a function f ( x l ,  x, ,  t )  by the reciprocal relations 

dx, dx, dt , f(k, w )  = ,n,\3 1 f (x , ,  x, ,  t )  e-i(k+wt) 
1 "  

J -m 
f (XI> x 

"- 
,, t )  = I f(k, w )  ei(k+wt) d2k dw. 

(3.10) 

I 

Thus, if 6 AO(k, w )  denotes the Fourier transform of $ A  on x3 = 0, the solution of (3.6) 
that has outgoing wave behaviour can be expressed in the form 

q 5 A ( ~ ,  t )  = J-1 6AO(k, w )  ei(k.x*y(k)z~-wt) d2kdw, (3.11) 

where the +_ sign is taken according as x3 2 0, and, for real values of k = Ikl, 

y ( k )  = sgn (k , )  Iki-k21i, k < Jkol 

= ilk:- k21i, k > IkoL (3.12) 

Taking the Fourier transform of condition (3.66) and using (3.11) one finds that 
k,  = w / c  being the acoustic wavenumber. 
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In this expression, 

ho(k) = - wo(zx,z2) e-’k.Xdx, dx,, 

and use has been made of the relation (applicable in incompressible flow) 

ik A (0,0, ho(k)) 
k 2  

G0(k) = 

137 

(3.14) 

(3.15) 

(3.16) 

where G,(k) is defined in terms of uo(zI,z2) as in (3.14). 

method of stationary phase to give (using (3.9)) 
In  the acoustic far field, the wavenumber integral in (3.11) can be evaluated by the 

(3.17) -.i - 2nMp0 x2 2 K: &K,) ho( Ik - KI ) ei U K I I t J  

PA(X,t) = 1xI2 a t L  lk-KI2 

wherein k = -MK,(z, / lxl ,  X ~ / I X I , O ) ,  M = U / C .  

Consider next the system (3.8). Since the vortex is distorted symmetrically with 
respect to the median plane of the airfoil, the solution can be expressed in terms of 
a retarded potential integral which yields (by (3.9)) 

where the integration is over all values of y .  
When the Mach number is small, the value of the integral in (3.18) is dominated 

by the first (dipole) term in the multipole expansion of the integra.1 (obtained by 
taking Ix-yl z 1x1 in the retarded time dependence), namely 

(3.19) 

where [t] = t - Ixl/c. Now uself represents the self-induced velocity field of the vortex 
and satisfies in incompressible flow 

m I-, (a A uself) (x, t )  d3X = 0. 

Thus, when the motion in the vicinity of the interaction region may be taken to be 
incompressible, the magnitude of p, is dependent on the distortion of the vortex 
produced by the irrotational velocity V$*. Using the representations (3.1 l ) ,  (3.13) it 
then follows that 

2npoMx2 a + -1 &K,) hO(lKll) eiUKl[tl dK,, M = U / c .  (3.20) 
[XI2 at -m 

The terms on the right-hand side of this expression correspond respectively to the 
components of W$A produc,ed by the terms on the right-hand side of the airfoil 
boundary condition (3 .6b ) .  The first of these components is equivalent to  the motion 
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induced by image vortices in the airfoil, and produces a spanwise acceleration of the 
vortex (see $ 5 ) .  The second accounts for a chordwise distortion due to the mean flow 
over the airfoil. It may be remarked that, since the time-independent quantity 
o, A v, may be discarded from (3.18), the contribution to p ,  obtained by retaining 
the quadrupole term (x.y/clxl) a(o A v )  ( y ,  [ t ] ) / a t  in the multipole expansion of the 
integrand is O(M) (4 1) relative to the dipole (3.20). 

The net acoustic pressure is obtained by substituting from (3.17), (3.20) into 
(3.9a).  When the Mach number M = U / c  $ 1, the right-hand side of (3.17) may be 
simplified by setting k = 0 in the integrand. The resulting expression is then equal 
and opposite in sign to the second term on the right-hand side of (3.20), and the far- 
field acoustic pressure becomes 

in which we have set cos 0 = xl/lxl. This is the radiation field ofa  dipole source whose 
axis is parallel to  the direction of motion of the airfoil. 

The component of pressure p, (x ,  t ) ,  given by (3.17), represents the acoustic field 
of a dipolc orientated in the spanwise direction. As noted above, this is identical 
to the thickness noise predicted by the Hawkings-Glegg theory. But the dipole 
strength is determined by the force exerted on the fluid by the airfoil, so that such 
a prediction for the vortex--airfoil interaction noise is clearly inadmissible because of 
thc impossibility of there being a spanwise force on a two-dimensional airfoil in the 
absence of skin-friction stresses. This objection, although justified above only in the 
limit M 4 1, is arguably valid also at  the higher Mach numbers appropriate to 
helicopter rotor blades, for which the Hawkings-Glegg theory was originally devised. 
Indeed, the same boundary condition (3.6b) is used in such applications, and in 
general would imply the existence of spanwise forces on a two-dimensional airfoil. 

The analysis given above of the vortex motion is based on the approximation of 
thin-airfoil theory. Thus it fails to account for the large distortion that occurs when 
that portion of the vortex in immediate contact with the airfoil is wrapped around 
the leading edge, and which, according to  rapid-distortion theory, remains in the 
surface of the airfoil. Equation (2.3) shows, however, that such bound vorticity does 
not contribute to the unsteady force on the airfoil (since on the airfoil VX,, o, u , , ~  all 
lie in the surface). It might therefore be expected that, in practice, a relatively small 
contribution to the acoustic radiation actually arises as a result of the large leading- 
edge distortion. 

4. Vortex core in solid-body rotation 
The validity of the general result (3.21) can be checked by an alternative procedure 

in the particular case in which the core of the undisturbed vortex has radius R and 
is in solid-body rotation a t  angular velocity 52, so that 

wo = 252, (z;+x$ < R 
= 0, elsewhere. 

In  the irrotational region outside the vortex the motion can be described by means 
of a velocity potential 9, and small perturbations in $ will satisfy there a 
homogeneous wave equation. When the maximum Mach number of the mean flow is 
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small, that equation can be taken to be (3.2) with the right-hand side set equal to 
zero. 

4.1. The scattering problem 

The unsteady velocity may be partitioned as in (3.7), with $, defined by (3.6), 
(3.11)-(3.16). To first order in the velocity uI is caused by the interaction of $A with 
the vortex. By symmetry, attention may be confined to the half-space x, > 0, and in 
the outer, irrotational flow we can write 

where 

Let 

(4.2) 

(4.3) 

where r$I(k, w ; X) is the time-harmonic componentpf $I produced by the interaction 
with the vortex of the Fourier component gA = $,,(k, w )  ei(k'x+y(k)s3) of $, (defined 
above by (3.11), (3.13)). Introducing cylindrical polar coordinates ( r ,  O,x,), r = 
( X ; + X $ ,  and setting k = k(cos8,,sin~o,0),  we can write 

(4.4) 

where J, is the Bessel function of order n (Gradshteyn & Ryzhik 1980, p. 973), and, 
when y ( k )  is real, the path of integration passes below the pole on the positive real 
A -axis. 

which is a solution of the 
homogeneous, time-harmonic wave equation in the outer region that has outgoing 
wave behaviour a t  large distances, can be written as a Fourier cosine integral: 

Since v13 = 0 on x, = 0, the diffracted field 

m m  

$I = C b ,  HF)(y(A) r )  cos (Ax,) ein(B-80)dA, r > R, (4.5) 
n--m 0 

where the coefficients b, = b,(k,w, A )  are to be determined, HF)(x)  is a Hankel 
function, and y(A)  is defined in terms of A as in (3.12). 

The unsteady motion in the core of the vortex can be regarded as incompressible 
provided wR/c = k,R + 1.  This will be the case when M 4 1,  since the maximal 
characteristic frequency is determined by the time ( x  R I U )  in which the core is 
severed by the leading edge of the airfoil. Let p denote the time-harmonic pressure 
perturbation that is equal to ip, + in the irrotational region. Write 

m 

p ( x )  = C pn(r ,  2,) ein('-Q. (4.6) 
n--m 

Within the vortex core, p,, satisfies (see e.g. Chandrasekhar 1981 ; Drazin & Reid 
1981 ; Greenspan 1968) 



140 M .  S. Howe 

Multiply (4.7) by (2/7c) cos (AX,) and integrate over the interval 0 < xs < + oc), to 
obtain, using condition (4.8), 

(4.9) 

and P, is the cosine transform of p,, such that ~ ( x )  is given in terms of P, by 

P(X) = 5 1: P,(r, A )  cos (Ax,) ein(H-Ho) dA. 

The solution of (4.9) which remains bounded a t  r = 0 can be cast in the form 

(4.11) 
,=--a, 

P, = cnIn(/3r) +ah r’G,(r, r ’ )  J,(kr‘) dr‘, r < R ,  (4.12) r 
where 

G,(r,  r’) = Kn(/lr)In(/3r’),  r > r’ 

= Kn(/3r’)In(pr), r < r’, (4.13) 

I ,  and K ,  are modified Bessel functions, and c, is a constant. 
The values of b,, c ,  in (4.5), (4.12) are determined by application of the conditions 

of continuity of pressure and of fluid particle displacement at the moving interface 
between the rotational and irrotational flows. The procedure is straightforward, and 
similar to that described by Chandrasekhar (1981) for related vortex stability 
problems. In  particular, one finds 

bn = bn(k ,  w ,  A )  

where 

(4.15) 

4.2. The radiated sound 

The acoustic pressure at large distances from the vortex is given by 

p ( x ,  t )  = P A @ ,  4 +PI@, i),  (4.16a) 

P A  ’ - P O , , >  a#* PI =-PO,,? (4.166) 

where p ,  is defined explicitly by (3.17). For the uniform vorticity distribution (4.1) 
one has 

QR J1 (kR) 
Cjo(k) = 

nk ’ 
so that, for M -+ 1, p A  may be taken in the form 

(4.17) 

(4.18) 
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The representation of $&c,t) is obtained by substituting from (4.5), (4.14) into 
(4.3). A t  large distances the integral with respect to h in (4.5) is evaluated by the 
method of stationary phase. Using the asymptotic approximation for the Hankel 
function H f ) ( x )  for large values of the argument, one then finds from (4.3), (4.16) : 

s_, (4.19) 
This is simplified by expanding the coefficients bn(k, w ,  k,x,/lxl) in powers of 

k , R ( 4  1). Making use of the small-argument expansions of the various Bessel 
functions in (4.14), (4.15) given in Gradshteyn & Ryzhik (1980) it is readily deduced 
that 

a m  

( - i)"+'b,(k, o, k, z3/Jxf) ei(n(8-eJ-w[tl) d2k dw 3 IxI+m. Po a 
1x1 at n--m 

t )  = --- 23 

2 

+ O[ (k, R)4 In (k,R)] ; 
- 1  

bo=-$' (k 
2k 

b,, = OC(k,R)"I, n > 1, 

wherein q!k,(k, w )  is the incompressive form of dAo(k, w )  (see (3.13)) : 

, K = (K,,  0,O).  (4.21) 
- iUk, [(k,) S(k2) d(w + Ukl)  

k 
Thus when the characteristic acoustic wavelength is much larger than the radius R 
of the vortex core, so that the integral (4.19) is dominated by contributions from the 
region wR/c  4 1, the leading-order approximation to the sum in (4.19) is furnished 
by the terms n = 1,  leading to 

-2ip0QR(x~+x34 q!~o(k,w)J,(kR)sin(8-80)e-iw[tl 
d2k dw. (4.22) 

C1Xl2 k P , ( X , t )  = 

Finally, noting that 
sin (8-8,) = (kl x2 -k2 51) 

k(s :  + x;)k ' 
(4.23) 

combining (4.18), (4.22) in (4.16a), and using (4.21), it follows that the net acoustic 
pressure is given by 

where, as previously, cos0  = xl/lxl. As in $3, the pressure component p A ( x , t ) ,  
generated by the diffraction of the undisturbed vortex velocity by the airfoil, is 
exactly cancelled by the radiation produced as a consequence of the distortion of the 
vortex by the displacement velocity field of the airfoil. The agreement of the 
particular result (4.24) with the conclusions of $3 may be confirmed by substituting 
for &,(k) from (4.17) into the general formula (3.21). 

It should also be noted that, whereas the timescale of the acoustic waves generated 
by the vortex-airfoil interaction is typically of order R/  U,  disturbances generated on 
the vortex as a result of its deformation tend to evolve over the very much larger 
time R / V  (provided V 4 U) ,  where V = SZR is the characteristic vortex velocity. A 
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cylindrical vortex in which the vorticity is uniform (or, more generally, is one-signed 
and assumes its maximum value a t  the vortex axis) is stable to arbitrary and small 
perturbations (see e.g. Michalke & Timme 1967). However, if the duration x u / U  of 
the interaction with the airfoil is very much larger than the evolution time R/V, it 
is possible that the vortex will be deformed beyond the limit of applicability of linear 
theory and that some form of vortex breakdown may ensue. The consequent 
production of spanwise vorticity of order SZ would then generate unsteady airfoil lift 
and an accompanying large increase in the magnitude of the radiated sound. Thus, 
it may be necessary to require that aV/RU < 1 in order to ensure the detailed 
validity of the present analysis. 

5. Gaussian distribution of vorticity 
5.1. General representation of the acoustic pressure 

To investigate the shape of the acoustic pressure signature we shall take 

(5.1) 

in the general representation (3.21), where V is a characteristic velocity such that the 
total circulation of the vortex is 27cRV, and R is the effective radius of the vortex core. 
This form is more convenient than the discontinuous distribution (4.1) since it avoids 
difficultics which arise in the numerical evaluation of integrals with rapidly 
oscillating integrands. 

Let a: 

p ( x , t )  = S_aI'(X;t:Y1)5(Y1)dVI; (5 .2)  

where P is the acoustic pressure produced when the vortex interacts with an airfoil 
whose profile x3 = rfr Q(xl + Ut) ,  say, has the singular form 

so that 
(5.3) 

Using (5.1) and (5.3) in (3.21), and results given in Gradshteyn & Ryzhik (1980, 
p. 497), one obtains 

F ( a )  = 2 [erfc(h-a)e-2"A+erfc(h+a)e2"A]2dh;  (5 .5)  J: where 

erfc (x) is the complementary error function, and use has been made of the identities 
a/at  = - (U/R) a/aa = iUK, in the integrand of (3.21). 

It is clear that  F ( a )  is an even function o f a ,  and that a = 0 a t  the retarded time 
at  which the singular airfoil (5.3) a t  x1 = y1 - Ut cuts the axis of the vortex. Numerical 
evaluation of the integral in (5 .5)  yields the dependence on a illustrated by the 
dashed curve in figure 3. F ( a )  assumes its maximum value at tl. = 0, and decays 
monotonically with increasing Itl.1, such that : 

(5 .6)  
F ( 0 )  = 2 / e ,  where E = d/8(1-$)  = 0.756,l  

F ( a )  x 2/1a1, la( + co. 1 
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I I I I 

1 2 3 4 
a 

FIGURE 3. Illustrating the behaviour of g ( a )  : ---, variation defined by (5 .5 )  ; 
-, interpolation formula (5.7). 

A smooth interpolation between these limiting behaviours is furnished by the 
formula 

This expression also gives a close approximation to @(a)  and its first and second 
derivatives for intermediate values of a,  as indicated by the solid curve in figure 3, 
and will be used to  simplify the following discussion. 

F ( a )  x 2/(a2 + e2);. (5.7) 

5.2.  Application to speci$c airfoil sections 
Let the maximum thickness of the airfoil be 2h, and set 

a x , )  = W x , / a ) ,  14 < a ,  
= 0 ,  1x11 ’ a. (5.8) 

Using (5.2), (5.4) and the approximation (5.7) we then have 

dh. (5.9) 

This result will be applied to the following airfoil sections. 

Case I Circular arc airfoil: 

z(h) = 1 - -A2,  JhJ < 1, maximum thickness a t  h = 0. (5.10 a)  

Case I1 Rounded nose: 

z(h) = (y); (1 + A ) ; ( l  - A ) ,  Ihl < 1, maximum thickness at h = -$. (5.10b) 

Case I11 Cusped trailing edge: 

z ( A )  = ( ~ ) ~ ( l - A 2 ) ~ ( 1 - - h ) ,  Ihl < 1, maximum thicknessat h = -$. (5 .10~)  
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FIQURE 4. The acoustic pressure Ixlp(x, t ) / p ,  P M h  cos 8 in Case T for R/a  = 0.1. 

Retarded position of vortex U[r] /a  relative to airfoil 

FIGURE 5. The acoustic pressure Ixlp(x, t ) / p ,  PMh COY 8 i n  Case 11 for R / a  = 0.1. 

In Case I we find 

1 + 1 
[ ( U [ t ] / ~ - l ) ~ + ( ~ / u ) ~ ] t  [ ( U [ t ] / ~ + l ) ~ + ( ~ R / a ) ~ ] i  

-In( 

The pressure signature is symmetric and is illustrated in figure 4 as a function of the 
retarded time for R/u  = 0.1. The leading edge of the airfoil cuts the axis of symmetry 
of the vortex when U[t] /a  = - 1, and the two severed sections of the axis are reunited 
a t  U[t]/a = + 1. The figure also shows the airfoil section, and the vortex core (of 
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FIGURE 6. The acoustic pressure Ixlp(x, t ) /po  P M h  cos 0 in Case I11 for R / a  = 0.1 

diameter 2R) drawn to the same scale in the chordwise direction. Comparison pf the 
analytic result (5.11),, which is based on the approximation (5.7) of F ( a ) ,  with a 
numerical prediction that uses the exact representation (5 .5) ,  reveals that the error 
in the peak levels shown in figure 4 is about 4%. 

The acoustic signatures in Cases I1 and 111 are illustrated in figures 5 and 6. 
Relative to Case I, there is a significant increase in the amplitude of the sound 
produced when the vortex is cut by a rounded leading edge, and the leading-edge- 
generated sound is strongest in Case 111, when the point of maximum thickness of the 
airfoil is closer to the nose. Of course, af;/ax:, = oc) a t  a rounded nose, so that the 
perturbation theory of 8 3 is strictly inapplicable, although the general trends 
depicted in the figures must be qualitatively correct. At the trailing edge it is the 
higher-order, second and third derivatives of f;(xl) that are singular respectively in 
Cases I and 11, and Case 111, and there is a corresponding reduction in the strength 
of the radiation from the trailing edge in Case 111 relative to Cases I and 11. 

5.3. Spanwise displacement of the vortex 
The net radiation from the vortex-airfoil interaction is generated by the mation of 
the vortex produced by image vortices in the airfoil. The action of these images is to 
displace the upper and lower severed portions of the vortex in the (same) spanwise 
direction. 

In  the undisturbed state the axis of symmetry of the vortex coincides with the 
x,-axis. If s(x3, t )  denotes the spanwise displacement (parallel to the x,-direction) 
of the axis, we find, by the procedure of $5.1, that 

(5.12) 
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FIGURE 7. Spanwise distortion of the vortex in Case I1 for R/a = 0.1 : (a) the spanwise distortion 
at instants designated A-E; (b) the trajectory in the plane xQ = R of the point of intersection with 
the vortex axis. 

where 

w 3 ,  t ;  Y1) = 
(5.13) 

x {erfc (A-a)e-2ah+erfc (h+a)e2”\}dA, 

a = (yl- Ut) /R .  

These formulae have been used to compute the displacement of the vortex in Case 
I1 (equation (5.10b)) for R / a  = 0.1. The results are illustrated in figure 7.  Figure 7 ( b )  
depicts the trajectory (Ut/a, s(R, t )  U/hV),  i.e. the motion of the point of intersection 
of the vortex axis and the plane x3 = R. Spanwise profiles of the axis in x3 > R are 
shown in figure 7 (a)  a t  specific instants designated A-E, which respectively occur at 
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Utla = -1 ,  -$, - i , O , + .  The distortion is greatest a t  C, a t  which time the point of 
maximum thickness of the airfoil is cutting the vortex axis. 

6. Comparison of thickness noise and lifting noise 
A symmetric airfoil translating a t  zero angle of attack, and cutting the vortex a t  

right angles to its axis experiences no lift and does not generate unsteady lifting 
noise. If, however, prior to the interaction, the vortex axis is inclined in a spanwise 
plane a t  a small angle 0, to the normal to the median plane of the airfoil, a lifting- 
noise pressure field p ,  is generated that is linearly proportional to the characteristic 
velocity V of the vortex. For the Gaussian distribution of undisturbed vorticity (5.1), 
p ,  can be expressed in the form (Howe 19883) 

where 

and @(a, b, x )  is Kummer's confluent hypergeometric function (Gradshteyn & Ryzhik 
1980, $9.21). 

The functionf,,(q) has its maximum value ( %  1.94) near 7 = 0, i.e. a t  the retarded 
time a t  which the axis of the vortex encounters the leading edge of the airfoil. 
According to figures 4-6, the thickness-generated sound p,, say, also attains its 
maximum amplitude a t  that time. Thus, comparing these maxima in Case I1 of $5 
when R/a  = 0.1, and a t  x in the far field, we find 

x2 aU 
x1 hV 

p J p ,  x 8.50,-- 

where the ratio x J x l  arises because the axes of the lifting- and thickness-noise 
dipoles are a t  right angles. In  applications h / a  x 0.1, V / U  x 0.1, typically, so that 
the lifting noise can exceed thickness noise by 20 dB or more even when 0, is as 
small as lo, and x2/x1  would then need to  be less than about 0.1 (corresponding 
approximately to 0 = COS-' (x, / lx\)  5 5") in order for the thickness-generated sound 
to be dominant. 

Thus, for a symmetric airfoil a t  zero angle of attack, it appears that the thickness- 
noise pressure fluctuations generated by a rectilinear vortex (which are nonlinearly 
dependent on the characteristic vortex velocity) are in practice negligible compared 
with those produced by unsteady lifting forces. This conclusion is also likely to be 
valid for an arbitrary gust interacting with a non-lifting airfoil since, according to $2, 
the thickness-noise amplitude is again nonlinear in the perturbation velocity near the 
airfoil. For an airfoil having finite mean lift, however, the amplitude of thickness- 
generated sound varies linearly with gust velocity (see $2) provided there exists a 
finite component of spanwise vorticity, and it might then be expected to make a very 
much more significant contribution to the radiated sound (cf. Howe 1988~) .  

7. Conclusion 
Sound is produced by the unsteady forces established when a rectilinear vortex is 

severed by a rapidly translating airfoil. In  this paper we have considered an airfoil 
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of symmetric section, a t  zero angle of attack which cuts the vortex a t  right angles to 
its axis, so that the unsteady lift vanishes identically. The intensity of the radiation 
is determined by the drag, and is conventionally termed unsteady thickness noise. 
For airfoils of acoustically compact chord it has been demonstrated, by reference to 
a general formula for surface forces in high-Reynolds-number flow, that the 
amplitude of the sound is proportional to the square of a characteristic velocity of the 
vortex motion. This result differs from previous estimates given by Hawkings (1978) 
and Glegg (1987), who obtained a linear dependence on vortex velocity, and 
predicted correspondingly higher levels of thickness noise. Those predictions were 
based on the hypotheses that the noise is produced by sources on the airfoil whose 
magnitudes may be calculated according to linear theory from the condition that the 
airfoil surface coincides with a stream surface, and that the back-reaction of those 
sources on the vortex is negligible. We have shown that the chordwise distortion of 
the vortex by the mean flow over the airfoil generates sound which exactly cancels 
that  from the surface sources. The residual radiation is produced by an acoustic 
dipole whose strength is determined by the spanwise acceleration of the vortex 
induced by image vortices within the airfoil, the acoustic amplitude being a 
quadratic function of thc characteristic velocity of the vortex. According to the 
general discussion of $2, these conclusions are unchanged when the airfoil has a finite 
angle of attack, provided the plane of motion of the airfoil is perpendicular to the 
vortex axis. 

In practice the nonlinear thickness noise produced when a non-lifting airfoil 
interacts at low Mach numbers with an arbitrary vortical gust is likely to be 
negligible compared with that generated by the unsteady lift forces. If the airfoil is 
at finite angle of attack and is generating mean lift, however, the interaction of the 
spanwise component of gust vorticity with the mean velocity of circulation about the 
airfoil produces a thickness-noise pressure field that is linear in the gust velocity, and 
may well furnish the dominant component of the sound radiated in the fore and aft 
directions. 

The research reported in this paper was performed under the Applied Hydro- 
dynamics Research Program of the United States Navy, Office of Naval Research, 
administered by Dr James A. Fein, David Taylor Research Center. 

Appendix. Unsteady force on a rigid body in arbitrary translational 
motion in an incompressible, viscous fluid 

A. 1. I n t r o ~ ~ c t ~ o n  

A rigid body of volume A is in translational motion a t  velocity U(t) in incompressible, 
viscous fluid of uniform density po which is a t  rest at infinity (see figure 8). It is shown 
in textbooks on aerodynamics (see e.g. Lighthill 1986), that the force F exerted by 
the fluid on the surface S of the body (including the skin friction produced by surface 
shear stresses) can be expressed in terms of the moment of the vorticity distribution 
over all space, as follows: 

(A 1) 

where c = +in three-dimensional flows. The second term on the right-hand side is the 
rate of change of momentum of the hypothetical ‘displaced fluid’ (i.e. of fluid of 
density po imagined to fill the region of volume A within the body). This problem has 
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FIGURE 8. Translational motion of a rigid body in incompressible, viscous fluid a t  rest a t  
infinity. 

recently been examined in great generality by Wu (1981). He has shown that a = 1 
for two-dimensional flows (where A becomes the volume per unit span of the body, 
and the volume integral is taken over unit distance in the spanwise direction), and 
that the formula remains valid for bodies in arbitrary translational and spinning 
motions provided the volume integral is extended to include the region occupied by 
the solid, within which o is equal to twice the angular velocity of the solid. 

When evaluating the moment integral in (A 1) o must include the vorticity within 
the fluid together with any bound vorticity on S. Consider, for example, the two- 
dimensional case in which S is in accelerated rectilinear motion in an ideal, inviscid 
fluid which is in irrotational motion. Then o = 0 within the fluid, and there is no 
circulation about S (since, otherwise there would be a starting vortex a t  some point 
in the wake). The component of F in the i-direction is therefore determined entirely 
by the inertia of the fluid carried along with 8, i.e. F, = -A,aU,/at, where A,, is the 
added-mass tensor (for translational motion) of the body. The bound vorticity on S 
associated with the sliding of the irrotational flow over the body furnishes a singular, 
surface distribution of vorticity that, when used in the integral of (A l), combines 
with the ‘displaced fluid ’ term to yield the representation of F in terms of the added 
mass. 

I n  many instances, however, it is convenient to represent F as the sum of its three 
constituent components: (i) the inertia due to added mass, (ii) the vector sum of the 
normal surface stresses induced on S by vorticity in the fluid and, (iii) the skin 
friction caused by surface shear stresses. To do this we first make the following 
preliminary definitions. 

Let x,(t) be a point fixed in S ,  so that dx,/dt = U,  and introduce the velocity 
potential $,(x-x0) of the instantaneous irrotational flow that would be induced by 
motion of S a t  unit speed in the i-direction. The added-mass tensor A,, of S (for 
translational motion) is given by 

A,, = (jsPo$in,ds. (A 2) 

where the surface element d S  is in the direction of the outward normal n, as indicated 
in figure 8. Define x, = x i - x o i - $ i ;  (A 3a) 

axi 
at 

then -= - U . V X , ,  n.VXi = 0 on S, V2Xi = 0 in the fluid. (A 3 b )  
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The force Fi exerted by the fluid on the rigid body in t#he i-direction is then given by 

where pn is the coefficient of viscosity (assumed uniform) and, when v denotes 
velocity, 

is the fluid velocity relative to  the moving body. The volume integral in (A 4) is taken 
over the region exterior to S wherein w =+ 0, and is the component of F determined 
by the normal surface stresses. The surface integral is the skin-friction force. Bound 
vorticity does not contribut>e to the volume integral because the no-slip condition 
requires that ure, = 0 on S. Similarly, if the flow is regarded as inviscid, the 
contribution from the bound vorticity is null, since on S the vectors VX,, o and v,,, 
all lie in the surface of the body. The proof of this formula is given below in §A 2. 

Quartapelli & Napolitano (1983) have derived a representation of F which is 
closely related to  (A 4), but requires the velocity field to be known throughout the 
whole of space. I n  the present notation, they show that 

(A 5) VreI = v- u 

where the volume integral is taken over the region bounded by t,he surface S of the 
body and a fixed surface x' at  a large distance from X. 

The volume integral in (A 4) also occurs in the problem of sound generation by low- 
Mach-number turbulence in the vicinity of an acoustically compact, stationary rigid 
body. It was shown by Howe (1975) that  the leading-order (dipole) component of the 
acoustic pressure p ( x ,  t) a t  large distances from the body can be expressed in the form 

where c is the speed of sound, and the origin of coordinates is taken a t  a point within 
S. Curle (1955) had previously provcd that the dipole strcngth of the radiation was 
equal to the unsteady force, -F, exerted on the flow by the body, such that p(x,t) 
= - (xi/4x C ~ X \ ~ )  dl$/at. This leads to  the identification of the integral on the right- 
hand side of (A 7 )  with c., and to its interpretation (in the absence of significant 
contributions from the skin friction when the Reynolds number is large) as the force 
produced by the turbulence-induced, normal stresses. The proof given below (by an 
entirely different procedure) formalizes this conclusion, and extends the result to a 
body in arbitrary translational motion. 

A.2. Derivation of equation (A 4) 
Let V denote the volume of fluid bounded internally by S and a t  largc distances by 
a surface Z which moves with the fluid. In  the following we shall use the integral 
theorem : 

- j-p> at 
t )  d3X = S , t  "(x,L)d3x+$ S+Z f(x,t) v.dS, (A 8) 

a 

where v(x,t) is the velocity. 
Proof. The momentum theorem applied to the fluid in I.' yields 

4 = -- po vi d3x- pn, dS. 
: tL  L 
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Write the momentum cyuation in the form 

a ( ~ o u ) + ~ ( p + $ p o v ~ )  2t = -pow A u-pocurlo, (A 10) 

and take the scalar product with VX, to obtain 

= -poVX,.(o A u)-poVX,.curlo. (A 11) 1 
This equation will be integrated over the fluid in V .  To do this we shall make use of 
simplifying relations derived below in (i)-(iii) : 

( i )  Applying (A 8), (A 3 b )  and the divergence theorem, and noting that u and 
V$,- l / lxlm as 1x1 + co, where nz = 2 , 3  respectively in two- and three-dimensional 
flows, one obtains as C-t 00, 

div (pox, u)d3x-  po [ ( u -  U).VX,)] U-dS. (A 12) 

On the right-hand side of this result 

so that (A 12) becomes 

JV div ( po X, g) d3x = ~ ~ v p 0 v i d 3 x - A . . ~ -  aga: fS po[(u-  U).VX,)] U-dS.  (A 14) 

For a viscous fluid the surface integral on the right-hand side vanishes because of the 
absence of slip on S ,  but we shall temporarily suspend application of this condition. 

Jvdiv [VX,(p+$pov2)]d3x = VX,.n(p+$pov2)dS 

(ii) Using the divergence theorem and (A 3 b ) ,  

i+z 
= f z n i p d S  as C+co. (A 15) 

(iii) Observing that VX,. curl o = div [X ,  curl 01 = div [o A VX,], it follows that 

[vpoVX,-cur10d3x = po(w A VX,).dS as Z+ co. f (A 16) 

Hence, integrating (A 1 1 )  over the fluid in V ,  and making use of (A 14)-(A 16) as 
.Z+ 00, we obtain 



152 M .  S.  Howe 

and (A 9) accordingly becomes, as .Z+ cn, 

[(u- V ) . V X i ]  U*dS. ( A  18) 

The final term on the right-hand side vanishes in viscous flow because of the no- 
slip condition. However, the condition n.VXi  = 0 on s, and the vector identity 

which follows by recalling that divu = V2Xi  = 0, implies that, in either viscous or 
inviscid flow, 

V X i - ( w  A U)d3x = [ ( u - U ) * V X , ]  U-dS, (A 20) s 
and the use of this in (A 18) leads directly to the desired result (A 4). 
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